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A~tract--This paper presents a correlation for the relaxation time which is a closure law for the 
homogeneous relaxation model (HRM). The HRM takes into account the non-equilibrium evaporation 
leading to the metastable liquid conditions. The purpose of this paper is to present the closed HRM and 
to show comparisons between its results and some available data. The possibility of the HRM to predict 
the critical mass-flow rates and the pressure distributions for one-dimensional flashing water flow has been 
validated. Although the model involves the use of several correlations (friction, heat transfer and the 
relaxation time), no adjustment of parameters against the data used for the comparison has been needed. 
Copyright © 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

The most important  feature of  flashing liquid flows seems to be the non-equilibrium vapour 
generation process as the pressure drops. It  manifests itself by the liquid's failure to begin 
evaporation when saturation conditions are reached, leading to metastable conditions. As a 
consequence, flashing starts with some delay and the real quality pattern may essentially differ from 
the equilibrium one. This greatly influences the void fraction as well as the pressure and velocity 
distribution along a flow. As a result, the classical homogeneous equilibrium model (Bilicki & 
Kestin 1990), assuming equilibrium vapour  generation, fails to reproduce not only quantitatively 
but also qualitatively measured distributions of  flow parameters. 

The so-called "slip models" are amongst  the oldest two-velocity models. They assume saturation 
conditions for both liquid and vapour. The additional closure law for the velocity ratio is added. 
The slip models wi thBankoff ' s  and drift-flux closures were analysed in detail by Bilicki et  aL (1988). 
All models calculated a very large increase in the void fraction as the critical state near the throat  
is approached. This was interpreted to mean that none of the two closures should be used to analyse 
critical flows, because their validity has been tested only for much lower values of  void fraction. 

Several elaborate computational  codes (TRAC, RELAP, etc.) have been developed to satisfy the 
needs of  nuclear-energy technology. All of  them are based on the one-dimensional, two-fluid model. 
The success of  these industrial codes is frequently due to local adjustments, which cause them to 
correctly reproduce limited cases. However, their predictive value for the case of  two-phase critical 
flows does not seem to be satisfactory (Hewitt et  aL 1987, 1990). Finally, it is necessary to mention 
the model recently developed by Yang (1991). It is composed of  eight equations with complex 
relations for nucleation, evaporation rate and momentum transfer included. In spite of  potential 
superiority, two-fluid models pose very severe closure problems. They are much more complicated 
and require a system of  empirical closure conditions, i.e. a large number of  adjustable numerical 
constants. Some of these constants may significantly influence the solution and they cannot always 
be easily determined with the required precision. 

The potential usefulness of  the homogeneous relaxation model (HRM) for the description of  
one-component,  two-phase flows has been suggested by Bilicki & Kestin (1990). The choice of  this 
model was justified not merely by its simplicity, but by the hope that, properly developed, it may 
prove adequate for many practical applications. Its principal advantage is its ability to account for 
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dispersion and dissipation of linear waves much more simply than the two-fluid model. This is 
confirmed with reference to the analysis of the two-fluid model of Adron & Duffey (1978). The 
most important dispersive phenomena were found to result from the disequilibrium between the 
liquid and vapour phases, combined with the fact that the liquid becomes metastable before boiling, 
that is from the finite rate of interphase mass transfer. The non-equilibrium interphase mass 
transfer is described here by means of a relaxation equation of the kind successfully exploited by 
Einstein (1920), Mandelshtam & Leontovich (1937), Meixner & Reik (1959) Broer (1958, 1970) and 
many others. To close the HRM in this form, a relation for the relaxation time corresponding to 
the fast evaporation (flashing) process is needed. The present paper offers a possible closure 
relation, being a correlation for the relaxation time calculated based on the Moby Dick (Reocreux 
1974) experiments. 

2. BASIC  E Q U A T I O N S  

The homogeneous relaxation model (HRM) consists of the usual three conservation laws for a 
two-phase mixture, supplemented by the vapour mass balance equation. The basic equations are 
as follows: 

Op Op Ow 1 dA 
Ot + w ~z + P ~z  = - PW A d~ 

Ox Ox F ~ + w - - = -  Oz p 

Ow Ow OP 
P ~ + PW ~z  4 Oz r - p g c o s q 0  

0h Oh 0P 0P 
p ~ + pW oz 8t W ~z = Q + wz 

[la] 

[lb] 

[lc] 

[ld] 

where the total specific volume and specific enthalpy of the mixture may be defined as 

v = XVsc(P) + (1 - X)VML(P, hML) [2a] 

h = xhso(P)  + (1 - X)hML [2b] 

where w denotes the mixture velocity, p is the density of the mixture and x is the actual dryness 
fraction. F represents the vapour generation rate. Subscripts "S" and " M "  denote, respectively, 
saturated and metastable conditions. 

The preceding model neglects the slip between the phases since we assume slip to be of secondary 
importance to the non-equilibrium effects, TL ~ Ts(P). Equations [1] and [2] are very simple, and 
for adiabatic flow require only two additional constitutive equations for the wall friction z and the 
interfacial mass transfer F. Let us note that if a liquid is assumed to be in saturation conditions 
then [lb] may be eliminated and as a result HRM reduces itself to the classical HEM. 

According to any hyperbolic model, flow is choked when the smallest characteristic velocity is 
equal to zero. This condition gives a relation for the critical velocity. Figure 1 presents the critical 
velocities arising from the HEM and HRM as functions of void fraction. We can see that, for the 
HRM, the critical velocity tends toward the speed of sound of a subcooled liquid when the void 
fraction goes to zero. This is not the case for the HEM, which exhibits a large discontinuity between 
the critical velocities for subcooled and saturated water. This fact, apart from being physically 
significant, appears also to be important for numerical calculations. 

3. T H E  R A T E  E Q U A T I O N  

The onset of  evaporation in a superheated liquid essentially changes the temperature and the 
total density of the two-phase mixture and, as a consequence, all the other flow parameters. Thus, 
the vapour generation rate F plays a fundamental role in [1]. This function describes a complicated 
process of  fast non-equilibrium evaporation (flashing), including homogeneous and heterogeneous 
nucleation and may depend not only on the flow parameters but also on the number and structure 
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Figure 1. The critical velocity for water (P = 2 bar) predicted by equilibrium (HEM) and relaxation 
(HRM) models for the saturated conditions• 

of  pre-existing interfaces (liquid-gas or liquid-solid) in the metastable liquid and on the flow 
patterns. Being conscious of  the complexity of  the problem and knowing that the vapour  mass 
production rate vanishes when the dryness fraction reaches its unconstrained equilibrium value 
£(P,  h), we feel it relevant to adopt the relaxation equation as the simplest linear approximation,  
or, if the reader prefers, the first term in a Taylor series expansion of the function F/p  (Bilicki & 
Kestin 1990). Then, [lb] takes the form 

Dx Fo x - 

Dt  p 0 
[3] 

which was successfully used by Einstein (1920), Mandelshtam & Leontowich (1937) and many 
others. It appears that Bauer et al. (1976) were among the first to make use of  this in the context 
of  two-phase flow. It is not difficult to show that, locally and instantaneously, the relaxation 
equation [3] builds into the system an exponential tendency toward an unconstrained equilibrium 
from an initial composition x0 according to 

x = .~ - (~ - xo)exp [4] 

Evidently, the time resolved evolution, x(t) ,  is governed by the solution of  the four equations of  
[1]. Taking the equilibrium dryness fraction as 

h - hsL(P ) 
= [5]  

hso (P) -- hsL (P) 

we can express the rate equation [3] in the form 

hML - -  hsL 1 
D__XXDt = F__qp = (1 - x)  h--s~o --- hsL O" [6] 
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Using this comparatively simple relation, instead of a detailed analysis of all the complicated 
phenomena that accompany the flashing process, may seem to model this complex situation 
somewhat crudely. Nevertheless, the simplicity and clear physical interpretation may promote 
favour of this approach. 

4. THE RELAXATION TIME 

In order to use [1]-[3], we need a relation for the local relaxation time O. Evidently, O could 
not be measured and no reliable expression existed to determine it. Bilicki et al. (1990) showed that 
the correlation given by Bauer et al. (1976), apart from not being dimensionally homogeneous, 
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failed to reproduce the measured pressure distribution. For  this reason, we have undertaken a trial 
to determine the local relaxation time based on the classical measurements  o f  critical flow rates 
and o f  their dependence on the pressure and void fraction distribution performed by Reocreux 
(1974). K n o w n  as " M o b y  Dick"  experiments, these experiments have served as a basis for the 
unders tanding of  critical two-phase, s ingle-component  flows ever since their publication. They were 
carried out  in a channel consisting o f  a straight por t ion followed by a conical expander provided 
with a 7 + inclined-angle divergence. The channel shape was carefully designed with the intention 
that  a one-dimensional  mathematical  description o f  the flows created in it should apply. The 
mass-flow rate, as well as the pressure and void fraction distributions as functions o f  longitudinal 
distance, were reported. Typical pressure and void fraction profiles are shown in figure 2, which 
represents three runs at the same upstream condit ions but at difference back pressures (inlet 
diameter 20 mm). The variat ion o f  void fraction was measured with an X-ray densitometer. 

Knowing  the mass flux and the pressure profile, P(z), we can calculate the corresponding velocity 
and total density distributions in the channel by solving the mass ([la]) and m o m e n t u m  balance 
([lc]) equations.  Then the enthalpy of  the l iquid-vapour  mixture may  be calculated based on the 
state equat ion [2] and the measured values o f  void fraction. This way, by eliminating the dryness 
fraction 

Et~ 
x = [7] 

vsG(P) 

f rom [lb] in the steady-state form, we can use it to determine the local relaxation time 

1 w(z) ~ E(z) dV  v dE E(z) v d v s o d P - ]  

O(z)  = x - x  LvsG(P) dz +VsG(P ~ dz VsG(P) VsG(P) d P  dzzJ" [8] 

For  the calculations, experimental data  were approximated by the spline polynomials  o f  the third 
order. The friction factor  f was determined based on the data coming f rom the subcooled water 
flow region. 

Variat ions o f  the relaxation time O (z) were calculated for all runs o f  the M o b y  Dick experiments 
for which flashing inception was situated in the test section. In all cases, the relaxation time O 
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Figure 3. Calculated values of the relaxation times as a function of void fraction ~. 
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Figure 4. Calculated values of the relaxation time as a function of relative pressure drop ~b. 

appeared to be a monotonical ly  decreasing function of  void fraction c and the non-dimensional  
pressure difference ~, = [Ps(Ti.) - P]/Ps(T~,), taking the values of  the order o f  1 s at the beginning 
of  flashing and decreasing to values o f  the order o f  0.01 s for large void fractions. The calculated 
values o f  O.  as a function o f  E, and qs, are presented in figures 3 and 4. The curves O(c)  change 
slope near O = 0.1 s, which corresponds to c near 0.25, where we can expect the transition in the 
flow regime f rom bubble to plug or  froth flow. 

The logari thmed values o f  On, En and ~'n were approximated by a plane using the least square 
method.  Thus, the correlat ion for the relaxation time took the form 

0 = 0oC °'257t,b' 2.24 [9] 

where 00 = 6.51 x 10 4 has the dimension of  time in seconds. The calculated values o f  On appeared 
to be strongly dependent  on the measured void fraction distribution. They were significantly (up 
to 10%) influenced even by the choice o f  method of  approximat ion of  the experimental data of  
c,. The scattering o f  O,  against the correlation [9] is demonstrated in figure 5. 

The correlat ion [9] gives comparat ively good results for small pressures (up to 10 bar). For  
greater pressures, another  form of  non-dimensional  pressure difference is suggested. 

= [ e ]  [101 
L~-~-(~SA 

where Pc is the pressure o f  the critical point. This form of  non-dimensional  pressure difference was 
applied by Feburie et al. (1993). Then the correlation for the relaxation time takes the form 

O =OoE 054(p-176 [11] 

where O0 = 3.84 x 10 -7 s. 
The M o b y  Dick experiments revealed that the process of  heterogeneous nucleation (flash point) 

occurs at a temperature which exceeds the saturation temperature by as much as 2-3°C. The values 
o f  O,  were calculated based on the measured distribution o f  the void fraction. In the region of  
superheated liquid flow (before flashing), the void fraction was too small to be measured, so the 
values o f  O.  could not  be calculated. Nevertheless, we may  at tempt to use correlations [9]-[11] as 
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Figure 5. Comparison between the values of O calculated in terms of [8] and [9]. 

an extrapolation in this region, where vapour  bubbles do not exist or they are too small to be 
detected. 

From [3] we see that for large values of  O the interfacial mass transfer disappears and [1] and 
[3] reduce to the homogeneous frozen model (HFM). On the other hand, very small values of  O 
impose x -- ~ which corresponds to H E M  as the second limiting case. Numerical experiments show 
that, in practice, the predictions of  the H R M  for O = 1 s and O = 0.001 s are the same as for the 
H F M  and HEM,  respectively. The values of  On obtained based on the Moby Dick experiments 
(see figures 3 and 4) indicate that the real "time-scale" takes intermediate values. Thus, the H R M  
with developed correlations of  relaxation time places itself somewhere between the H F M  and H E M  
as the limiting cases. 

5. C A L C U L A T I O N  P R O C E D U R E  A N D  R E S U L T S  

A computer  program has been developed to calculate the steady-state flashing liquid flow (critical 
or not) according to [l] with the relations [3]-[6] and [9] for irreversible mass transfer between 
metastable liquid and saturated vapour. For predicting the vapour-l iquid friction pressure drop, 
the Lockhart-Martinell i  correlation modified by Richardson (1958) has been used 

~b 2 = (1 - e)-1.75 [12] 

where (~2 is the ratio between the vapour-l iquid friction pressure gradient and the single-phase 
friction pressure gradient where the liquid flows at the same flow rate as in the multiphase flow. 

In the model equations [1], we have written on the r.h.s, of  the energy equation the term Q related 
to the heat transfer between the single- or two-phase fluids and the wall. In the discussed 
applications, we have assumed that the flow is adiabatic, so the heat transfer term at the wall 
vanishes. However, there are no theoretical objections to replace it with some appropriate heat 
transfer law if diabatic flow has to be modelled. The thermodynamic properties of  the metastable 
water come from extrapolation from the subcooled water region by means of  the functions 
developed by Bilicki & Kardas (1991). The saturation vapour properties were calculated using 
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Garland & Hoskins '  (1988) correlations. The steady-state version of the system of [1], with the 
above-described closure laws, has been integrated step by step using a Runge-Kut ta  method of 
fourth order. The integration is continued until either the critical flow conditions or the outlet 
pressure are reached. The critical flow condition (Bour6 et  al. 1976) is where the determinant of 
the set of  model equations vanishes. The PIF (possible-impossible flow) procedure (Yan et al. 1991) 
is used to determine critical mass-flow rates. Since [1], [3] and [9] automatically reduce to the 
subcooled liquid model when the void fraction (dryness factor) is equal to zero, calculations may 
start from subcooled as well as two-phase conditions• 

The model [1]-[3], with the developed correlations, has been verified against the Reocreux data 
(Downar-Zapolski  1993). The calculated mass-flow rates and the pressure distributions appeared 
to be very sensitive to the values of  the relaxation time. Another comparison has been made with 
the experiments concerning the flashing water flow through the nozzle of  the safety valve (CROSBY 
1D2 JLT-JOS-15-A) made by Bolle et  al. (1994). The inlet pressure and temperature of  the initially 
subcooled water were kept constant. The lift of  the disc was fixed high enough so that it did not 
influence the values of the critical mass-flow rates. Due to controlled, slow decrease of  outlet 
pressure the critical flow conditions in the valve nozzle could be established. The PIF procedure 
has been used to calculate both the pressure profiles and the values of the critical mass-flow rates. 
Figures 6 and 7 show typical results obtained by means of the HRM.  The nozzle profile is drawn 
on the bot tom of each figure. The asterisks correspond to the measured values. It can be noted 
that the pressure distribution is comparatively well reproduced. 

The H E M  does not take the form of the subcooled water model (SWM) for the void fraction 
equal to zero, so before the saturation pressure was obtained the SWM had been used. For the 
HEM,  the critical velocity does not tend toward the speed of sound of the subcooled liquid when 
the void fraction goes to zero, taking, for water, values of the order of 1 m/s for small void fractions 
(see figure 1). The velocities in the nozzle in the subcooled water flow region were always higher 
than 10 m/s. As a result, during calculations of  the critical mass-flow rates, when we changed the 
model at the saturation pressure, we immediately entered a supercritical flow regime for the HEM. 
Thus, according to the HEM, the flashing water flows were choked exactly at the same moment  
when they reached the saturation pressure. In other words, for this model, subcritical flow was 
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possible only when it was subcooled everywhere (pressure did not drop below the saturation 
pressure). This made the calculations of the pressure distribution impossible in the two-phase flow 
region. The pressure profile in the two-phase flow region may be calculated by means of the HEM 
only when the local velocity that corresponds to the saturation pressure is lower than the HEM 
critical velocity for the void fraction equal to zero. This condition is not always satisfied. 

Table 1 presents the comparison between the critical mass-flow rates measured and predicted by 
the HRM and the HEM. It can be seen that the HEM generally tends to underestimate the values 
of the critical mass velocities. Comparatively good agreement appears only for high subcooling 
(> 15°C) of inlet water, which, as the back pressure decreases, causes large nozzle velocities 
(~  20 m/s). In this case, the assumption that the flow is choked when the pressure in the nozzle 
is equal to that of saturation seems to be a good approximation. 

Table 1. Compar ison between the data from Bolle e t  al.  (1994) and the present model 

Pi, Tin T~, t(Pi , ) -  Ti n mfr AHRM AHEM 
Run No. (bar) (°C) (°C) (kg/s) (%) (%) 

16/2 5.02 149.9 2.10 1.31 - 2.6 - 53.3 
51/1 5.28 149.5 4.41 1.36 0.7 - 36.3 
54/1 4.05 138.5 5.59 1.23 - 0.7 - 29.0 
17/2 5.60 149.7 6.47 1.61 - 4.6 - 32.0 
72/I 5.56 149.3 7.00 1.50 1.2 - 2 6 . 4  
73/1 5.56 148.4 7.49 1.50 1.8 - 24.4 
15/2 6.08 150.7 8.66 1.67 0.7 - 22.5 
18/2 6.14 149.2 10.05 1.77 - 0.9 - 19.8 
55/1 4.70 137.6 11.94 1.49 4.5 - 10.2 
50/1 4.68 135.6 13.78 1.50 5.0 - 7 . 1  
11/2 4.05 119.7 24,39 1.75 0.5 - 2 . 4  
12/2 5.12 119.7 33,64 2.12 0.7 0.4 
7/2 5.56 120.4 35.70 2.21 1.2 1.3 

14/2 5.72 119.1 37.88 2.27 1.5 1.5 
8/2 6.10 120.0 39.49 2.35 1.7 1.9 
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6. C O N C L U S I O N S  

A correlation for the relaxation time, being a closure relation for the homogeneous relaxation 
model (HRM) analysed by Bilicki & Kestin (1990), is proposed. It gives the characteristic time for 
the non-equilibrium evaporation process as a function of void fraction and non-dimensional 
pressure difference. The HRM as well as the classical HEM have been implemented in a computer 
program. The results are compared with some data obtained by Bolle et al. (1994). The 
non-equilibrium character of fast evaporation and its substantial influence on the two-phase flow 
behaviour have been noticed. 

The possible-impossible flow (PIF) procedure is found to be a good way to calculate the choked 
two-phase flows. It enables prediction of not only the critical mass-flow rate but also the 
distribution of  all the parameters upstream of the critical section of a choked flow. Using the PIF 
procedure, we are able to use any two-phase flow model, so all the assumptions that have been 
made can be clearly seen in the model equations. This is elegant from the physical point of view. 

The HEM tends to underestimate the values of critical mass-flow rates by more than 20%, when 
the inlet subcooling is not large. Because of the large discontinuity of the critical velocity between 
the subcooled liquid model and the HEM, the calculation of the flow parameters in the two-phase 
region may be impossible when the fluid velocity is high. 

For  the HR M the critical velocity tends toward the speed of sound of pure liquid when the void 
fraction goes to zero. The model seems to predict, with good accuracy, both the pressure profiles 
along a nozzle and the critical mass-flow rates for the flashing water flow. 

Finally the authors would like to emphasize that the correlation presented here may serve only 
as a first approximation for the relaxation time and that it was verified only for water flows. We 
hope that other workers in the field will reopen this problem and will direct their efforts to obtain 
a more physically motivated relation that could be valid for all the liquids. 
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